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Thus the following theorem is proved. 
Theorem. The arbitrary force 

Q (4, Q') = Q* (4 + Q** (q’) 

that is continuous with its first order derivatives can be resolved into potential, noncon- 

servative position, gyroscopic, and dissipative forces. 

The definition (8) of nonconservative position forces and the definition (10) of gyro- 
scopic forces imply that the first must depend on coordinates qti of the system, while the 

second depend on velocities qh’. However, the general definition (8) of the nonconserva- 
tive position forces does not exclude the possibility of these forces depending also on 

velocities q,;’ and time t. The gyroscopic and dissipative forces may, also, depend not 
only on velocities qk but on coordinates q,,. and time t , as well. Certain theorems that 
determine the stability properties of motion of a system on the basis of force structure 

which satisfy these general defintions are given in [4]. 
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A method is proposed for the determination of certain moments of the Boltzmann 

collision integral, which appear in boundary problem solutions in the kinetic the- 

ory of gases, by expansion in the velocity half-space without actually calculating 
these [l], which makes it possible to establish definite relationships (including those 
derived earlier [Z, 31) between the moments. 

The solution of boundary value problems of the kinetic theory of gases by the method 
of expansion in the velocity half-plane necessitates the determination of certain integ- 
rals that are moments of the Boltzmann collision integral, which many authors rightly 
consider to be the most laborious part of solving problems by this method. The step-by- 

step method of direct calculation of these moments was developed in [l]. It makes it 
possible, in principle, to solve a wide class of boundary value problems of the kinetic 
theory. In practice the application of that method [l] necessitates, however, very labo- 
rious calculations and does not provide means for checking the obtained results (errors 
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appear in (11 in the determination of some of the moments), and, what is more import- 
ant, the use of exact values of moments in the approximate theory leads in a number of 
cases to effects that must be attributed to excessive accuracy. 

It was shown in [Z, S] how to establish certain relationships between moments of the 

collision integral on physical considerations and, thus, simplifying the process of solving 
the problem. A number of such relationships is established in the present work by math- 

ematical means. 

Let us consider the Boltzmann equation in the form proposed by ~~prnan-~nskog [4] 

f(O) 
[ 

(@ - +) c*g + 2 (cicj -4 8&F] = n21 (cp) 

Its solution is sought in the form 

1 
The method of successive approximations in the linear theory with respect to deriva- 

tives aT/tlrt and acoi I ar, consists of taking into account of one, two, etc. terms of ex- 

pansions of coefficients Ai and Bfj in Sonin-Laguerre polynomials. In particular, solu- 

tion (1) in the approximation of a single polynomial (for any model of molecule inter- 

action) is of the form 
cp = - f a1 

[( 
+-c2, Ci $ I (2) 

i 
fb,(c&- *#z)%] 

where coefficients ai and bi are related by formula 

-4ai = 3bi (3) 

In practice these are specified by the model of molecular interaction, which makes 

it possible to determine parameters a1 and bi. Thus for hard balls b, = 5’., l/K& where 

k is the molecule mean free path and for Maxwellian molecules 

bi = ‘/a (LIZ / 2k)“‘[nA, (5)1-l, As(5) = 0.436 

Let us consider the two-dimensional isothermic shear flow of gas along the axis x far/ 
&,= 0). With allowance for (2) the Boltzmann equation has the form 

2c,c, = b,Z (cxcz) 

Let us consider moments c, sign cy, cxcz, czczz sign cXr c,cz sign cX of this equation. 

As usual the moment A(c) of function Q(C) is taken to be the integral 

5 A (clip (cfexp f-c2) dsc 

with respect to all velocities. Then in the right-hand part we obtain moments of the 

collision integral 1, = [C$Z, cz srgn CJ, Is = [c,c,, cx2cz sign c,] 
1s = [cXcz, c&, 11, = [cxci, czcz sign cy] 

which is the aim of this paper. 
Integrals in the left-hand part are elementary computed. As the result we have 

Is = - IC / 47 16 = - JT / b,, I, = - ‘/,n 1/E! bit II, = - 3~t I bi (4) 

If there is only a temperature gradient (a2’ I I%, = 8T / I%) in the gas, then 

(“/P - CZ) cz == 01 I [(j/s - c2) cz] 



Let us consider moments cxcz sign cy, t c (6/, - c2). A simple computation yields 

(5) 

The comparison of formulas (4) and (5) with allowance for (3) shows that the following 

re~tionships: 
I2= fe r= -g'"' 

1 

116 = 31% Ill = - 
5 I/n 

-L 113--- 3 (6) 

between the moments of collision integrals are satisfied (independently of the selected 
model of molecular interaction). 

In practical applications we have also to deal with moment 112 = [cxcz, (si~ - 
e2) cz sign es] 

It will be readily seen that 
112 = --'izrz (7) 

Equalities (6) and (7) are corollaries of the single-polynomial approximation of expan- 
sion ( 1) whose accuracy depends on the model of molecular interaction (for Maxwellian 

molecules it is exact). It should be noted that the method of half-space expansions pro- 

posed in [5] and later developed in the kinetic theory of gases in [S] was never extended 
beyond a single-polynomial approximation (for higher approximations this method be- 

comes much more complex ; the author is not aware of any publications using such appro- 

ximations). Hence a nonobservance of equalities (6) and (‘7) when solving boundary va- 
lue problems by the method (6) must be considered as leading to excess (illusory) accu- - 

racy (see in the connection with this [Z, 31 and also [7, 81). 

Thus the values of certain moments of Boltzmann collision integrals (in linearized 
form) can be determined without a direct and fairly laborious computation. Such values 
are exact for Maxwellian molecules. For other models their accuracy is limited by the 
single-polynomial of the expansion by the Chapman-Enskog method. It should be stressed 

that more exact values of moments used in some publications may in many cases lead 

(and do so) to the prediction of effects that do not exist in reality and are simply the 

result of exceeding the exactitude of the theory. The method described in this paper 
satisfies the obligatory physical requirement [Z] that the correct passage to limit in the 

volume of gas away from walls must be ensured in solutions of boundary value problems 

of the kinetic theory. 
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Basic proportions are defined for setting a computation scheme for the determina- 

tion of aerodynamic characteristics of an aircraft on a computer. A schematic 
representation of an aircraft by a system of reference elements is described and 
substantiated. The general nonstationary linear problem of aerodynamics and hy- 
drodynamics is reduced to a set of canonical e -problems that are solved indepen- 
dently. General properties of linear characteristics (loads, normal forces, and mo- 
ments) are established. Integral relationships of the convolution kind which yield 

explicit formulas for these characteristics in terms of related transition functions 

and laws of kinematic parameter variations with time ej (T) are derived. A num- 
ber of general theorems, including the generalization of the invertibility theorem, 

are proved. Exact formulas are established for transition functions at the initial 

instant of time. 

1. The general non8trtfonrry linear problem, Let us consider the 
unsteady motion and the deformations of an aircraft in a perturbed continuous medium. 

We attach to the aircraft a conventional Cartesian system of coordinates whose OX -axis 
is directed forward along the aircraft axis and the 0~ -axis directed to the right over the 

wing span (Fig. I). Let U0 be the mean velocity of the (coordinate) origin 0, and W, 
W+, WA and W6 be the velocity vectors of perturbations induced by the aircraft, trans- 
fer, gusts of the medium, and aircraft surface deformations, respectively. We denote the 
vector of absolute angular velocity by 52 and time by t (t = 0 is the instant of unsta- 
ble processes onset), and introduce the dimensionless quantities 

where b is a characteristic linear dimension. 
Let uU,, be the varying velocity component of origin 0, and a and fi the angles of 

attack and of the side slip, respectively. For projections of the transfer velocity at any 
point of the aircraft surface we then have 


